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Agenda

● Announcements
○ Project page will be public on our course website today
○ Some updates will be added in the future

● Main topic: Hidden Markov Model



A Simple State Machine

A state machine is a machine’s AI logic in graph form.

Each node is a state, each directed edge represents a path from one state to 
another.

The initial state can be any state, but there is only one terminal state: the AI can 
only stop and return the output at the terminal state.
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Finite State Machine/Automata

If there are finitely many states, the structure is called Finite State Machine 
(FSM) or Finite State Automata (FSA).

FSM/FSA is widely used in computational linguistics.
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Finite State Machine/Automata

Each state can output a symbol. Symbols can be characters, words, tags, etc..

The symbols in a FSM/FSA form a vocabulary.

Then, a FSM/FSA can generate all possible sequences of the symbols in the 
vocabulary. The set of all these sequences is called language.

We can also verify if a sequence can be generated by a FSM/FSA.
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Finite State Machine/Automata

The simple structure of FSM/FSA limits its application in modeling.

When used as a generator, it outputs a possibly infinite set.

When used as a recognizer, it can only return True of False.
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Finite State Machine/Automata

However, we often want more than these.

For example, what are the odds of the sequences and what are the likelihoods of 
True or False.

This leads to the adaptation of probabilities to the transitions.
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Markov Model

The resulting model is a Markov Model, as each transition depends on the 
outgoing state but not the ones prior to it, and the sum of all outgoing transition 
probabilities of any state is one.
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Markov Model

The resulting model is a Markov Model, as each transition depends on the 
outgoing state but not the ones prior to it, and the sum of all outgoing transition 
probabilities of any state is one.

Furthermore, we can make it more robust by allowing termination at any state.
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(Hidden) Markov Model

At this point, each state outputs and must output one symbol, making the state 
outputs deterministic (observable).

However, if instead, each state can output any symbol with certain probability, then 
the outputs are non-deterministic (hidden) and the resulting model is called 
Hidden Markov Model (HMM).

1 2 30.2
0.4

0.4

0.9

0.2

1



HMM - What It Is

At a high level, a HMM is a Markov model with Markov transition process and 
non-observable (hidden) states.

Note that the sum of output probabilities in each state must be one.

Image source: Prof. Betke’s original presentation



HMM - How It Works

1. Choose a random state by some initial probability
2. Choose and output a symbol by some symbol probability in the current state
3. Choose the next state by some transitional probability and repeat from 2 till 

satisfied

Image source: Prof. Betke’s original presentation



HMM Applications

● Weather forecasting
● Financial analysis
● Part of speech tagging



HMM Notations

The following notations are commonly used in HMM literature:

● States and the number of states: S = [S1, S2, S3, …, SN]
● State at time t: qt
● Vocabulary, symbols, and the size of vocabulary: V = [V1, V2, V3, …, VM]

○ sometimes symbols are in lower case
● Transition probabilities as a matrix: A = {aij}
● The probability to yield symbol k in state j: B = {bj(k)} = {P(Vk at j at t | qt = Sj)}
● Initial probabilities: 𝝅 = [𝝅1, 𝝅2, 𝝅3, …, 𝝅N]
● Sequence of observations (observed symbols) at time T: O = O1O2O3…OT
● Everything above except for qt and O: 𝞴 = (S, V, A, B, 𝝅) or more commonly 

just (A, B, 𝝅)



HMM Example - States and Symbols

S = [S1, S2, S3]

V = [V1, V2, V3, V4]

Image source: Prof. Betke’s original presentation



HMM Example - Transitions

A[1, :] = [0, 0.9, 0.1], A[2, :] = [0.2, 0, 0.8], A[3, :] = [0.95, 0, 0.05]

Image source: Prof. Betke’s original presentation



HMM Example - Symbol Probabilities

b1(V1) = 0.01, b1(V2) = 0, b1(V3) = 0, b1(V4) = 0.99

b2(V1) = 0, b2(V2) = 1, b2(V3) = 0, b2(V4) = 0

Image source: Prof. Betke’s original presentation



HMM Example - Symbol Probabilities

Suppose 𝝅 = [0.5, 0.2, 0.3]

What is P(O) = P(V2)?

Image source: Prof. Betke’s original presentation



HMM Example - Symbol Probabilities
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HMM Example - Symbol Probabilities

Suppose 𝝅 = [0.5, 0.2, 0.3]

What is P(O) = P(V2V2)?
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HMM Example - Symbol Probabilities

Suppose 𝝅 = [0.5, 0.2, 0.3]

What is P(O) = P(V2V2)?

Image source: Prof. Betke’s original presentation



HMM Example - Symbol Probabilities

Suppose 𝝅 = [0.5, 0.2, 0.3]

What is P(O) = P(V2V1)?

Image source: Prof. Betke’s original presentation



HMM Example - Symbol Probabilities

Suppose 𝝅 = [0.5, 0.2, 0.3]

What is P(O) = P(V2V1)?

Image source: Prof. Betke’s original presentation



HMM Example - Symbol Probabilities

Suppose 𝝅 = [0.5, 0.2, 0.3]

What is P(O) = P(V2V1V3)?

Image source: Prof. Betke’s original presentation



HMM Example - Symbol Probabilities

Suppose 𝝅 = [0.5, 0.2, 0.3]

What is P(O) = P(V2V1V3)?

In your homework/exam, you only need to consider the non-zero terms.

Image source: Prof. Betke’s original presentation



HMM - Three Problems

There are three basic questions to answer about HMM before we can apply it.

● Evaluation problem
○ Given a sequence of observations O and the model 𝞴, what is P(O | 𝞴)?

● Recognition problem
○ Given a sequence of observations O and the model 𝞴, what is the optimal state sequence Q = 

q1q2q3…qT?
● Learning/training problem

○ Given a sequence of observations O and the model 𝞴, how to adjust 𝞴 to maximize P(O | 𝞴)?



HMM Problem 1: Evaluation Problem

We have just seen how fast the math gets ugly.

In general, the formula is

where Q is a sequence of states.

The time complexity is exponential.



HMM Problem 1: Evaluation Problem

Suppose that for each state Si, we know the quantity

That is, suppose we know the probability that the model outputs the partial 
sequence O1O2…Ot when it reaches state Si at time t for all states Si, can we 
compute 𝜶t + 1(j) for some state Sj?



HMM Problem 1: Evaluation Problem
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HMM Problem 1: Evaluation Problem

This observation leads to an inductive algorithm.

Initially, for all i

Next, for all j at each step t < T,

Finally, when t = T

Time complexity? Polynomial!



HMM Problem 1: Evaluation Problem

This is called the forward procedure.

Consequently, there is a backward procedure.



HMM Problem 1: Evaluation Problem

Define

This is the probability of observing the future subsequence Ot + 1Ot + 2…OT, given 
that the current state is Si at time step t.

It can be computed using future 𝛽t + 1 (suppose we know these future values) as 
follows.



HMM Problem 1: Evaluation Problem

Therefore, the backward procedure can be described as follows.

Initially, for all i

Next, for all i at each step t = T - 1, T - 2, …, 1,

Finally,



HMM Problem 1: Evaluation Problem

Together these two are called the Forward-Backward Procedure.

Note that their outputs must be the same, as they are computing the same 
quantity from different directions.



HMM Problem 2: Recognition

Problem statement:

Given a sequence of observations O and the model 𝞴, what is the optimal state 
sequence Q = q1q2q3…qT?

Before trying to answer this question, what is the right question to ask?

How to measure optimality?



HMM Problem 2: Recognition

The most common measurement: P(Q | O, 𝝺), the probability of the state 
sequence (or path) given the observed symbol sequence.

In other words, to solve problem 2, we want to find Q* such that P(Q* | O, 𝝺) is 
maximized.

But this requires looping through all possible paths, which we have known is not 
feasible.

However, since P(Q | O, 𝝺) P(O | 𝝺) = P(Q, O | 𝝺), we can use P(Q, O | 𝝺) instead.



Optimal Path

Let’s take a break by considering this simply problem.

Say Anya hits the wall while chasing a ghost in the house 
and got isekai’ed to a grid world.

She is initially located at the bottom-left corner and she 
finds her favourite treat at the top-right corner.

The only available actions are up and right.

Moving between blocks incurs a cost and the costs are not 
uniform.

How to find the path with the lowest cost?

T

A



HMM Problem 2: Recognition

New problem statement:

Given an observation sequence O and model 𝝺, what is the state sequence Q that 
maximizes the probability P(Q, O | 𝝺)?

Define the best score representation

This is the highest probability of a sequence Qt whose first t - 1 terms are Qt - 1, the 
current state is Si, and the outputs are Ot. Therefore, 



HMM Problem 2: Recognition

Definition:

Initially,

Then, 𝜹T(i) can be computed recursively:

The path can be retrieved by backtracking the chosen states

This is the Viterbi algorithm.



HMM Problem 3: Learning/Training

Problem statement:

Given an observation sequence O and model 𝝺, how do we adjust 𝝺 to maximize 
P(O | 𝝺)?

If we can solve this problem, then we can train a model starting from some 
random parameters.

But there is no optimal way to estimate the parameters.

One can at best use some iterative procedure to locally maximize the probabilities.



HMM Problem 3: Learning/Training

First, define a new function

This is the probability of being in state Si at time t and state Sj at time t + 1, given 
the observations and the model.

We can sum over j

This is the probability of being in state Si at time t, given the observations and the 
model.



HMM Problem 3: Learning/Training

● 𝛄t(i) : probability of being in state Si at time t, given the observations and the 
model

● 𝝽t(i, j) : probability of being in state Si at time t and state Sj at time t + 1, given 
the observations and the model

What are the sums of these two quantities over time steps t from 1 to T - 1?

This is because they follow Poisson binomial distribution.

https://en.wikipedia.org/wiki/Poisson_binomial_distribution


HMM Problem 3: Learning/Training

We can then update 𝝺 as Wait, how do we compute this?



HMM Problem 3: Learning/Training

where



HMM Problem 3: Learning/Training

The process is called “Baum-Welch Re-estimation Algorithm”.

It is repeated till stable.


